CANNY 7

Материал из CANNY Wiki
Перейти к: навигация, поиск

CANNY 7 — компактный программируемый логический контроллер ориентированный на автомобильное, бытовое и промышленное применение.

Содержание

Общие сведения[править]

Программируемый логический контроллер CANNY7, ввиду небольшого количества внешних каналов, может быть отнесен к классу интеллектуальных реле или NanoPLC. Тем не менее, возможностей CANNY7 достаточно для решения многих задач автоматизации, контроля и управления.

Уникальность CANNY7 заключается в совокупности особенностей, позволяющих назвать его первым программируемым логическим контроллером ориентированным на автомобильное применение. Такими особенностями являются:

  • номинальное напряжение питания и каналов ввода-вывода 0 / 12В (18В max);
  • максимальный выходной ток каждого из 11 каналов ввода-вывода контроллера: +/-120мА, достаточен для управления типовыми автомобильными реле;
  • нтерфейс CAN 2.0B совместимый с ISO-11898, SAE J2411 широко применяемым в автомобилях;
  • встроенные средства управления собственным энергопотреблением контроллера в диапазоне от 5 до 60мА, позволяющие экономно расходовать заряд аккумулятора во время простоя автомобиля;
  • энергонезависимая память программ и шестьдесят четыре 16-и битные ячейки энергонезависимой памяти данных доступные пользовательскому приложению, способные сохранить критически важные данные при сбоях питания;
  • широкий диапазон рабочих температур от -40 до + 85 оС;
  • встроенная защита от высоковольтных выбросов и короткого замыкания;
  • компактный корпус соответствующий классу защиты IP50 подходит для монтажа и эксплуатации в составе оборудования кабины автомобиля;
  • пакеты специализированного системного и прикладного программного обеспечения для работы с автомобильными сетями CAN и LIN.

Для написания пользовательских программ CANNY 7 создан графический язык программирования CFD, позволяющий быстро создавать эффективные пользовательские приложения — функциональные диаграммы. Бесплатная интегрированная среда разработки CannyLab, содержит средства редактирования, отладки и записи программного обеспечения в контроллер.

Для записи программного обеспечения в контроллер не требуется специального оборудования, необходим только ПК с портом USB версии 1.1 или выше, с установленной на нем средой CannyLab и стандартный кабель miniUSB.

Доступный пользователю объем памяти контроллера способен вместить программы, состоящие из нескольких сотен функциональных блоков, что позволяет реализовать достаточно сложные алгоритмы.

Каждый из 11 каналов ввода-вывода может работать в любом из 98 режимов, определяющих напряжение, ток и временные параметры входного и выходного сигналов. Кроме того, отдельные каналы могут быть сконфигурированы для работы в цифровом режиме, для приема/передачи данных таких протоколов как 1-Wire, I2C, RS-232, LIN. Конфигурация любого канала может быть установлена и изменена из пользовательского приложения.

Двухцветный светодиодный индикатор, управляемый из пользовательского приложения удобен для индикации режимов работы контроллера и диагностики.

Устройство и принцип работы[править]

Внешний вид и расположение элементов[править]

Основными конструктивными элементами CANNY 7 являются: микроконтроллер (MCU) со вспомогательными цепями, система электропитания всех элементов контроллера, схема согласования электрических уровней каналов ввода-вывода, система электрической защиты, разъемы и индикаторный светодиод, размещенные на единой печатной плате 65 х 23 мм установленной внутри быстроразборного пластикового корпуса. Контроллер имеет три наружных разъема и один внутренний. Для подключения контроллера к питанию и внешним устройствам, в комплект его поставки включен набор соединительных жгутов. Наружный разъем Х1 содержит четыре контакта: вход питания +12В, вход питания GND, CAN-H и CAN-L. Наружный разъем Х2 содержит восемь контактов, соответствующих первым восьми каналам контроллера, начиная с канала №0 и заканчивая каналом №7. Наружный разъем Х3 содержит три контакта, соответствующих каналам №8, №9 и №10 контроллера. Внутренний разъем USB1 контроллера служит для подключения интерфейсного кабеля miniUSB связывающего контроллер с ПК.

6 2 1 1.png

Программная архитектура[править]

CANNY 7 является цифровым программируемым вычислительным управляющим устройством. В целом, для CANNY 7 справедливы общие сведения о программируемых логических контроллерах изложенные во введении к настоящему руководству. Основными элементами CANNY 7 являются: арифметическо-логическое устройство (АЛУ), внутренняя память, подсистема управления ходом исполнения команд и система ввода-вывода.

6 2 2 1.png

Арифметическо-логическое устройство — вычислительное ядро CANNY 7. АЛУ обеспечивает исполнение системного программного обеспечения и пользовательских функциональных диаграмм, помещенных во внутреннюю память контроллера. Внутренняя память контроллера разделяется на энергонезависимую память программ, энергонезависимую память данных и оперативную память данных. Подсистема управления ходом обработки команд, отвечает за переключение и настройку режимов работы контроллера. Система ввода-вывода обеспечивает связь контроллера с внешним миром, с использованием как дискретных каналов ввода-вывода, так и стандартных цифровых интерфейсов CAN / LIN / RS232 / USB.

Структура программного обеспечения[править]

6 2 3 1.png

Программное обеспечение CANNY 7 состоит из: программного загрузчика, системного ПО (операционной системы и драйверов) и пользовательской функциональной диаграммы.

Программный загрузчик обеспечивает работу контроллера в режиме загрузки ПО, организуя передачу данных между CANNY 7 и персональным компьютером по протоколу USB, осуществляет проверку целостности и запись переданного от ПК программного обеспечения во внутреннюю память контроллера. Программный загрузчик помещается во внутреннюю память контроллера в процессе его производства и не может быть удален или изменен пользователем. Системное программное обеспечение CANNY 7 распространяется производителем в виде файлов формата CCX и содержит операционную систему и набор драйверов, обеспечивающих исполнение пользовательской функциональной диаграммы и её взаимодействие с ресурсами контроллера. Модификация пользователем содержимого данных файлов не допускается. Содержимое различных файлов CCX может быть многократно записано пользователем в контроллер. Пользовательская функциональная диаграмма создается и модифицируется пользователем в интегрированной среде разработки CannyLab и, после записи в контроллер, задает алгоритм его работы в автономном режиме. Пользовательские диаграммы могут быть многократно записаны в контроллер и сохранены из среды CannyLab в файлы формата CFD.

Режимы работы[править]

Предусмотрено несколько режимов работы контроллера, предназначенных для выполнения основных операций с ним.

Режим загрузки ПО[править]

В данном режиме, контроллер функционирует под управлением встроенного программного загрузчика, выполняющего запись системного программного обеспечения и функциональной диаграммы в контроллер по командам CannyLab. Вход в режим осуществляется автоматически, при установлении соединения контроллера с ПК по интерфейсу USB. При переходе в данный режим выполняется общий сброс контроллера: исполнение контроллером функциональной диаграммы прекращается, каналы ввода-вывода контроллера переводятся в нейтральное состояние, включается встроенный зеленый светодиод контроллера. При установлении связи с контроллером со стороны программного обеспечения ПК, зеленый светодиод контроллера переходит в мерцающий режим. Выход из данного режима происходит автоматически, при разрыве соединения контроллера с ПК. Если в момент выхода из режима загрузки ПО, энергонезависимая память программ контроллера содержала корректно записанное системное программное обеспечение, то контроллер переходит в автономный режим работы, в противном случае, происходит возврат в режим загрузки ПО.

Автономный режим[править]

Автономный режим является основным режимом работы контроллера. В данном режиме контроллер под управлением загруженного в него системного программного обеспечения последовательно, в бесконечном цикле, исполняет функциональную диаграмму, работая по алгоритму заданному пользователем. Переход в данный режим происходит автоматически, при подключении контроллера к внешнему питанию 12В в отсутствие USB соединения. При работе в данном режиме, функциональной диаграмме пользователя доступны все ресурсы контроллера, драйверы которых включены в загруженное системное программное обеспечение.

Автономный режим пониженного энергопотребления[править]

Данный режим является вариантом обычного автономного режима, в котором после каждого цикла исполнения функциональной диаграммы, контроллер делает паузу в работе, снижая своё энергопотребление до минимального. Таким образом, контроллер работает в пульсирующем режиме, периодически «засыпая» и «просыпаясь». Включением, отключением и настройкой параметров данного режима управляет функциональная диаграмма. Использование данного режима актуально при разработке систем, ориентированных на батарейное питание, таких как бортовое автомобильное оборудование.

Среда исполнения функциональных диаграмм[править]

Представление функциональной диаграммы[править]

Созданная в среде CannyLab графическая функциональная диаграмма, непосредственно перед записью в контроллер автоматически обрабатывается транслятором, который выполняет проверку диаграммы на непротиворечивость, определяет порядок выполнения функциональных блоков и преобразует диаграмму в исполняемый код — последовательность машинных команд АЛУ контроллера CANNY 7.

Порядок исполнения[править]

6 4 2 1.png

Исполняемый код диаграммы, при записи в контроллер уже содержащий системное программное обеспечение, включается в последовательность машинных команд системного ПО. Таким образом, общая последовательность команд контроллера с загруженным системным ПО и функциональной диаграммой, будет состоять из: процедуры инициализации, исполняемой однократно после каждого сброса контроллера и исполняемого кода функциональной диаграммы, обрамленного процедурами управления ресурсами контроллера, и помещенного в бесконечно исполняемый цикл – цикл выполнения диаграммы.

Некоторые драйверы, включенные в состав системного ПО контроллера, например драйвер CAN, требуют безотлагательной реакции контроллера на возникающие в процессе приема и передачи данных программные события. Программный код таких драйверов обрабатывается контроллером асинхронно, параллельно с основным потоком исполнения. На время обработки асинхронных вызовов драйверов, исполнение основного цикла выполнения диаграммы кратковременно приостанавливается.

Доступ к ресурсам контроллера[править]

Все доступные пользователю из функциональной диаграммы ресурсы: системные ресурсы контроллера, подсистема ввода-вывода и дополнительные драйверы включенные в состав системного ПО, отображаются на защищенное адресное пространство внутренней памяти контроллера. Данное адресное пространство разделено на регистры чтения (контроля) и регистры записи.

Пользователь имеет возможность указать регистр чтения в качестве источника входных данных практически любого функционального блока на диаграмме и, тем самым, извлечь и использовать при реализации собственных алгоритмов сведения, полученные контроллером из внешнего мира. Например информацию об электрическом потенциале на каком-либо контакте контроллера, или содержимое пакета данных принятого контроллером из CAN.

Регистр записи может быть использован в качестве получателя выходных данных любого функционального блока на диаграмме. Таким образом, пользователь осуществляет управление ресурсами контроллера из функциональной диаграммы, получая возможность воздействовать на объекты внешнего мира. Например, переключить внешнее реле, изменив электрический потенциал на одном из контактов контроллера, к которому подключена его обмотка; включить контрольный светодиод; задать режим работы CAN; отправить пакет данных.

Порядок использования большинства ресурсов контроллера включает в себя задание пользователем необходимых параметров их работы, например полярности выходных каналов, полярности и чувствительности входных каналов, скорости обмена данными по CAN и т. д.

Задание таких параметров производится в форме записи специальных констант в один или в несколько определенных регистров контроллера, в зависимости от того, конфигурацию какого из ресурсов требуется задать. Например, установкой константы со значением 121 в регистр, расположенный по адресу 2432 задается режим работы канала №0 в качестве выхода положительной полярности.

6 4 3 1.png

В среде CannyLab, для удобства пользователя, все доступные регистры контроллера поименованы, как и все специальные константы, использующиеся при взаимодействии с ресурсами контроллера. Поэтому для пользователя CannyLab данная операция будет выглядеть как установка константы с именем «Стандартный положительный выход» в регистр с именем «Регистр конфигурации канала №0».

6 4 3 2.png

Установив таким образом режим работы канала №0, мы можем по появлению значения «1» в регистре расположенном по адресу 2465 («Регистр входного значения канала №0»), узнать о приложении положительного электрического потенциала к контакту №1 разъема Х2 контроллера.

Ресурсы контроллера[править]

Системные ресурсы и режимы работы[править]

Основная статья: CANNY 7, Системные ресурсы и режимы работы

Системные ресурсы контроллера отображаются на группу регистров чтения и группу регистров записи. Обращаясь к данным регистрам из функциональной диаграммы, можно получить востребованные в практическом применении сведения о текущем состоянии контроллера и управлять режимами его работы. Список регистров системных ресурсов находится в разделе «Состояние контроллера» справочника регистров, который доступен пользователю через контекстное меню элементов «Регистр чтения» и «Регистр записи».

Драйвер каналов ввода-вывода[править]

Основная статья: CANNY 7, Драйвер каналов ввода-вывода

Пользователям CANNY 7 доступны одиннадцать дискретных каналов ввода-вывода общего назначения. Каждый канал физически представлен соответствующим контактом разъема X2 (Каналы №№0..7) либо разъема X3 (Каналы №№8,9 и 10) контроллера. Записывая и считывая данные соответствующих регистров драйвера, функциональная диаграмма может как управлять электрическим потенциалом на каждом из этих контактов так и получать информацию о текущем значении потенциала каждого из них.

Физические характеристики каналов позволяют подключать к ним различные внешние исполнительные устройства — электромагнитные реле, небольшие электродвигатели, светодиоды, слаботочные цепи управления оборудованием. В качестве внешних источников дискретных сигналов способных управлять работой контроллера, возможно использовать механические, электромеханические и электронные кнопки и переключатели, генераторы импульсов, источники напряжения 0-12В, транзисторные выходы различной аппаратуры и т.п.

Режим и параметры работы любого из каналов задаются функциональной диаграммой. В каждый момент времени канал может работать только в одном из возможных режимов, однако допускается динамическое переопределение конфигурации канала из функциональной диаграммы в процессе ее выполнения.

Драйвер высокочастотного широтно-импульсного модулятора (ВЧ ШИМ)[править]

Основная статья: CANNY 7, Драйвер высокочастотного широтно-импульсного модулятора (ВЧ ШИМ)

Два из одиннадцати каналов ввода-вывода (Канал №1 и Канал №2) CANNY 7 поддерживают работу в режиме высокочастотного широтно-импульсного модулятора. Каналы могут быть задействованы независимо друг от друга и иметь независимые настройки скважности сигнала и подтяжки линии, однако, период высокочастотного ШИМ является параметром, общим для обоих каналов. В режиме ВЧ ШИМ, временные параметры ШИМ – период и скважность задаются в диапазоне от 2 до 20000 микросекунд, с шагом 1 микросекунда.

В режиме ВЧ ШИМ канал имеет фиксированную полярность импульсов — GND 100мА. Генерация может вестись как в режиме открытого коллектора – подтяжка линии отсутствует или внешняя, так и в режиме с внутренней подтяжкой к +12В (задается установкой значения в соответствующем регистре). В данном режиме канал работает асинхронно функциональной диаграмме, что позволяет добиться максимальной стабильности временных параметров генерируемого сигнала.

Примечание: В режиме высокочастотного широтно-импульсного модулятора электрическая защита канала от короткого замыкания находится в отключенном состоянии! Перегрузка или короткое замыкание каналов контроллера находящихся в режиме ВЧ ШИМ может привести к выходу канала контроллера из строя!

Драйвер UART / RS232 / Modbus[править]

Основная статья: CANNY 7, Драйвер UART - RS232 - Modbus

Два из одиннадцати каналов ввода-вывода (Канал №9 и Канал №10) CANNY 7 поддерживают работу в режиме приема/передачи данных последовательных протоколов UART, RS-232 и могут быть использованы для связи контроллеров друг с другом или с внешним оборудованием поддерживающим данные протоколы связи. Каналы могут быть задействованы независимо друг от друга и иметь индивидуальные настройки скорости передачи данных, типа и конфигурации используемого протокола, подтяжки линии.

Реализация UART в контроллерах CANNY7 позволяет организовать последовательный прием и передачу данных по одному проводу в полудуплексном режиме. Таким образом CANNY7 может иметь 2 независимых подключения с использованием протокола UART. Контроль состояния канала передачи данных должен осуществляться пользователем из функциональной диаграммы. Если канал свободен, то устройство может начать передачу данных, в противном случае устройство должно дождаться освобождения линии.

Реализация протокола RS-232 в контроллерах CANNY7, при использовании обоих каналов UART данных, позволяет организовать обмен данными с другим RS-232 устройством в дуплексном режиме, т.е. по одному каналу выполнять отправку данных, а по другому одновременно осуществлять прием данных.

Протокол Modbus в контроллерах CANNY7 реализуется как поверх UART, так и поверх RS-232. В качестве ADU (Application Data Unit) используется компактный двоичный вариант - Modbus RTU. Проверка целостности данных осуществляется с помощью автоматически рассчитываемой контрольной суммы (CRC). Размер пакета ограничен 16 байтами включая CRC.

Примечание: Для корректной работы всех протоколов на базе UART/RS-232 необходимо, чтобы контакты GND устройств, совершающих обмен данными, были приведены к единому потенциалу ("общая земля").
Примечание: В реализации UART активным уровнем линии является потенциал GND 100mA, пассивным - положительный потенциал заданный внутренней или внешней подтяжкой канала контроллера. В реализации RS-232 — потенциалы обратные.

Драйвер UART / RS232 / Modbus в своей работе использует ресурсы каналов контроллера, но имеет более высокий приоритет чем драйвер дискретного ввода-вывода. Таким образом, при активации драйвера UART / RS232 / Modbus, для задействованных в его работе каналов, изменение значений в связанных с ними регистрах драйвера дискретного ввода-вывода будет проигнорировано контроллером.

Драйвер CAN[править]

Основная статья: CANNY 7, Драйвер CAN

Два специальных внешних вывода контроллера CANNY 7, расположенные на 4х контактном разъеме: CAN-H и CAN-L, предназначены для подключения к цифровой информационной шине CAN.

Драйвер LIN[править]

Основная статья: CANNY 7, Драйвер LIN

Два из одиннадцати каналов ввода-вывода CANNY 7, которые могут быть переданы под управление драйвера UART/RS-232 (Канал №9 и Канал №10), могут быть использованы для организации приема-передачи данных как два независимых канала драйвера LIN.

Каналы драйвера LIN могут подключаться как вместе так и по отдельности, иметь индивидуальные настройки скорости передачи данных, подтяжки линии и типа узла сети MASTER или SLAVE.

Драйвер LIN в своей работе использует ресурсы каналов контроллера, но имеет более высокий приоритет чем драйвер дискретного ввода-вывода. Таким образом, при активации драйвера LIN, для задействованных в его работе каналов, изменение значений в связанных с ними регистрах драйвера дискретного ввода-вывода будет проигнорировано контроллером.

Драйвер I2C[править]

Основная статья: CANNY 7, Драйвер I2C

В качестве линий связи (SDA и SCL) может быть назначена любая пара каналов контроллера CANNY 7. При этом, данные каналы должны быть подтянуты к напряжению 5В резисторами номиналом от 1 кОм до 10 кОм снаружи. Особенность реализации протокола I2C в контроллерах CANNY7 состоит в том, что CANNY7 может выступать только в качестве ведущего (Master) узла сети и обмен данными между устройствами, который может быть как одно- так и двунаправленным, происходит отдельными сеансами, с максимальной длиной сообщения I²C внутри одного сеанса равной 16 байтам, т. е. открытие одновременно несколько сеансов с разными устройствами не допускается. Скорость обмена фиксированная и составляет 100 кбит/с. Общее число ведомых устройств на линии может достигать нескольких десятков.

Драйвер I2C в своей работе использует ресурсы каналов контроллера, но имеет более высокий приоритет чем драйвер дискретного ввода-вывода. Таким образом, при активации драйвера I2C, для задействованных в его работе каналов, изменение значений в связанных с ними регистрах драйвера дискретного ввода-вывода будет проигнорировано контроллером.

Драйвер Dallas 1-Wire[править]

Основная статья: Драйвер Dallas® 1-Wire®

Контроллер CANNY7 может быть использован в качестве ведущего (MASTER) узла в однопроводной сети передачи данных Dallas 1-Wire.

Для подключения контроллера CANNY7 к шине 1-Wire может использоваться любой из его каналов ввода-вывода. При этом, данный канал должен быть снаружи подтянут к напряжению 5В резистором номиналом от 3 кОм до 7 кОм. В контроллерах CANNY7 предусмотрена возможность обращения к конкретному устройству на шине 1-Wire по его адресу, что позволяет организовать работу с контроллером нескольких ведомых устройств по одному каналу, в том числе, используя несколько каналов контроллера, возможно его последовательное подключение к нескольким шинам 1-Wire.

Драйвер Dallas 1-Wire в своей работе использует ресурсы каналов контроллера, но имеет более высокий приоритет чем драйвера ввода-вывода. Таким образом, при активации драйвера Dallas 1-Wire, для задействованных в его работе каналов, изменение значений в связанных с ними регистрах драйвера ввода-вывода будет проигнорировано контроллером.

Параметры пользовательской конфигурации[править]

Основная статья: CANNY 7, Параметры пользовательской конфигурации

Параметры пользовательской конфигурации могут быть заданы конечным пользователем контроллера в момент загрузки в него программного обеспечения с использованием Исполняемого файла автономной загрузки ПО в контроллер. После загрузки ПО и запуска контроллера в автономном режиме, установленные пользователем таким образом данные, становятся доступны функциональной диаграмме в соответствующих регистрах контроллера.

Грамотное использование пользовательских параметров существенно повышает гибкость и универсальность решений на базе контроллера, позволяя конечному пользователю, не имеющему навыков работы с CannyLab, вносить безопасные изменения в работу алгоритма контроллера используя простой пользовательский интерфейс.

Энергонезависимая память (ЭНП)[править]

Основная статья: CANNY 7, Энергонезависимая память (ЭНП)

Для исключения потери критически важной информации (состояния контроллера, состояния внешних устройств и т. п.) при сбросе питания, в контроллере CANNY7 предусмотрено наличие энергонезависимой памяти. Сохраненные в ней значения будут доступны после восстановления питания контроллера в специальных регистрах.

Пользователю доступны 64 шестнадцатибитные ячейки энергонезависимой памяти, доступ к которым осуществляется с помощью соответствующих регистров чтения и записи.

Примечание: Работа с энергонезависимой памятью не требует какой-либо специальной предварительной конфигурации.

Драйвер пульта ИК ДУ[править]

Основная статья: CANNY 7, Драйвер пульта ИК ДУ

Контроллер CANNY7 позволяет принимать и передавать команды инфракрасных пультов дистанционного управления (ИК ДУ) в широко распространенных форматах NEC и extended NEC. Работа драйвера возможна в трех режимах: только прием, только передача или прием/передача. Для приема и передачи используются два любых канала контроллера.

При передаче команд ИК ДУ, используемый для этого канал контроллера CANNY7 генерирует только модулирующий сигнал. Для формирования пакетов импульсов контроллеру требуется наличие несущей частоты, источником которой может выступать как один из каналов ВЧ ШИМ CANNY7, так и внешний генератор ШИМ. Прием команд ИК ДУ требует наличия внешнего демодулятора, например TSOP1736 или аналогичного.

Драйвер ИК ДУ в своей работе использует ресурсы каналов контроллера, но имеет более высокий приоритет чем драйвер дискретного ввода-вывода. Таким образом, при активации драйвера ИК ДУ, для задействованных в его работе каналов, изменение значений в связанных с ними регистрах драйвера дискретного ввода-вывода будет проигнорировано контроллером.

Технические требования[править]

Электрические характеристики и требования к условиям эксплуатации[править]

Напряжение питания 9...18 В
Потребляемый ток: в рабочем режиме (не более) 55 мА
в энергосберегающем режиме (не более) 5,5 мА
Максимальный ток каждого канала в режиме выхода +120 мА / -120 мА
Сопротивление канала в режиме входа 4 кОм или 200 кОм
Диапазон рабочих температур -40оС...+85оС
Степень защищенности от пыли и влаги IP50

Защита электрических цепей:

  • от короткого замыкания канала — программная;
  • от перегрузки канала — внутренними токоограничительными сгораемыми резисторами;
  • от смены полярности источника питания — внутренним диодом;
  • схема подавления высоковольтных выбросов при коммутации индукционной нагрузки каналов с №0 по №7: диод и варистор;
  • схема подавления высоковольтных выбросов при коммутации индукционной нагрузки каналов с №8 по №10 — отсутствует.

Меры безопасности[править]

В цепях контроллера отсутствует опасное для жизни обслуживающего персонала напряжение. Открытые контакты контроллера при эксплуатации находятся под напряжением. Любые подключения к контроллеру и работы по его техническому обслуживанию производятся только при отключенном питании контроллера и подключенных к нему устройств.

Монтаж и подключение[править]

Монтаж и подключение контроллера должны производиться только квалифицированными специалистами, изучившими настоящую документацию. Монтаж контроллера должен производиться в местах соответствующих требованиям к условиям эксплуатации контроллера.

Не допускается попадание влаги на контакты выходных соединителей и внутренние элементы контроллера. Запрещается использование контроллера при наличии в атмосфере кислот, щелочей и иных агрессивных веществ.

Установка контроллера и прокладка кабелей подключаемых к нему должна производиться на расстоянии не менее 0.3 метра от высоковольтных силовых линий и источников сильных электромагнитных излучений — мощных реле, контакторов, газоразрядных ламп. Не допускается попадания влаги на корпус контроллера в месте его установки.

Транспортирование и хранение[править]

Контроллеры транспортируются всеми видами закрытого транспорта. Размещение и крепление транспортной тары с упакованными устройствами в транспортных средствах должны обеспечивать их устойчивое положение и не допускать перемещений во время транспортирования.

Транспортирование и хранение должны осуществляться при температуре окружающего воздуха от минус -40 до +85 °С и относительной влажности воздуха – до 80%, с соблюдением мер защиты от ударов и вибраций. В воздухе не должны присутствовать кислоты, щелочи и иные агрессивные вещества. Контроллеры следует хранить на стеллажах.